The GC-Rich Mitochondrial and Plastid Genomes of the Green Alga Coccomyxa Give Insight into the Evolution of Organelle DNA Nucleotide Landscape
نویسندگان
چکیده
Most of the available mitochondrial and plastid genome sequences are biased towards adenine and thymine (AT) over guanine and cytosine (GC). Examples of GC-rich organelle DNAs are limited to a small but eclectic list of species, including certain green algae. Here, to gain insight in the evolution of organelle nucleotide landscape, we present the GC-rich mitochondrial and plastid DNAs from the trebouxiophyte green alga Coccomyxa sp. C-169. We compare these sequences with other GC-rich organelle DNAs and argue that the forces biasing them towards G and C are nonadaptive and linked to the metabolic and/or life history features of this species. The Coccomyxa organelle genomes are also used for phylogenetic analyses, which highlight the complexities in trying to resolve the interrelationships among the core chlorophyte green algae, but ultimately favour a sister relationship between the Ulvophyceae and Chlorophyceae, with the Trebouxiophyceae branching at the base of the chlorophyte crown.
منابع مشابه
Updating Our View of Organelle Genome Nucleotide Landscape
Organelle genomes show remarkable variation in architecture and coding content, yet their nucleotide composition is relatively unvarying across the eukaryotic domain, with most having a high adenine and thymine (AT) content. Recent studies, however, have uncovered guanine and cytosine (GC)-rich mitochondrial and plastid genomes. These sequences come from a small but eclectic list of species, in...
متن کاملMitochondrial and Plastid Genomes of the Colonial Green Alga Gonium pectorale Give Insights into the Origins of Organelle DNA Architecture within the Volvocales
Volvocalean green algae have among the most diverse mitochondrial and plastid DNAs (mtDNAs and ptDNAs) from the eukaryotic domain. However, nearly all of the organelle genome data from this group are restricted to unicellular species, like Chlamydomonas reinhardtii, and presently only one multicellular species, the ∼4,000-celled Volvox carteri, has had its organelle DNAs sequenced. The V. carte...
متن کاملMassive difference in synonymous substitution rates among mitochondrial, plastid, and nuclear genes of Phaeocystis algae.
We are just beginning to understand how mutation rates differ among mitochondrial, plastid, and nuclear genomes. In most seed plants the mitochondrial mutation rate is estimated to be lower than those of the plastid and nucleus, whereas in the red alga Porphyra the opposite is true, and in certain green algae all three genomes appear to have similar rates of mutation. Relative rate statistics o...
متن کاملMitochondrial genome of the colorless green alga Polytomella capuana: a linear molecule with an unprecedented GC content.
One common observation concerning mitochondrial genomes is that they have a low guanine and cytosine content (GC content); of the complete mitochondrial genome sequences currently available at the National Center for Biotechnology Information (NCBI) (July 2007), the GC content ranges from 13.3% to 53.2% and has an average value of 38%. Here, we present the GC-rich mitochondrial genome (57% GC) ...
متن کاملHistory of Plastid DNA Insertions Reveals Weak Deletion and AT Mutation Biases in Angiosperm Mitochondrial Genomes
Angiosperm mitochondrial genomes exhibit many unusual properties, including heterogeneous nucleotide composition and exceptionally large and variable genome sizes. Determining the role of nonadaptive mechanisms such as mutation bias in shaping the molecular evolution of these unique genomes has proven challenging because their dynamic structures generally prevent identification of homologous in...
متن کامل